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Sexual communication can evolve in response to sexual

selection, and it can also cause behavioral reproductive

isolation between populations and thus drive speciation.

Anurans are an excellent system to investigate these links

between behavior and evolution because we have detailed

knowledge of how neural mechanisms generate behavioral

preferences for calls and how these preferences then

generate selection on call variation. But we know far less

about the physical mechanisms of call production,

especially how different laryngeal morphologies generate

call variation. Here we review studies of a group of species

that differ in the presence of a secondary call component

that evolved under sexual selection. We discuss how the

larynx produces this call component, and how laryngeal

morphology generates sexual selection and can contribute

to speciation.
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Introduction: anuran acoustic communication,
sexual selection, and speciation
One of the most important decisions an animal makes

is choosing a mate, and usually it is the female choosing

a male [1,2]. There is strong selection on males to

produce signals that indicate its species and on females

to be attracted preferentially to its own species’ signal.

This female call preference leads to species recog-

nition. But there is always variation among conspecific

signals and differential female attraction to these sig-

nals generates sexual selection, which is the variation in

reproductive success due to variation in the ability to

acquire mates [3].
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Anuran vocal communication is an excellent system to

understand the interaction among mating signals, brain,

and behavior, as well as the evolutionary consequences of

these behaviors on speciation. Capranica studied the

evoked vocal responses of bullfrogs to synthetic calls to

gain insights into how animals extract information from

complex acoustic patterns [4�]. Later studies by Capra-

nica and many others used electrophysiology and gene

expression to probe how the auditory system decodes the

mating call and passes this information to higher brain

centers involved in decision making [5,6��]. Simul-

taneously, studies of female phonotaxis provided a critical

link between the auditory system and behavior, and

placed anuran mate recognition firmly within current

theories of evolutionary biology [7,8��]. Thus there is a

detailed understanding of the neurological and physio-

logical bases of how frogs recognize mating calls and how

this leads to mating preferences among and within

species. However, we understand much less about how

calls are produced. The most detailed studies are on

Xenopus (Kelley, this issue, and [9,10,11��]). But these

under-water calling frogs have a derived vocal production

system that differs from most other anurans; for example,

Xenopus lacks vocal cords [12].

Here we review the case of a more typical frog in order to

understand the link between laryngeal morphology and

mating calls. We then explore how variation in calls and

their underlying morphology can generate sexual selec-

tion, behavioral reproductive isolation between popu-

lations, and thus potentially drive speciation.

Mechanisms of production
The main organ responsible for sound production in frogs

is the larynx. In most frogs, air is expelled by contracting

trunk muscles surrounding the lungs, which pushes the

air through the larynx [13–15]. The incoming air causes

the vibration of the vocal cords and the larynx itself [14].

The air then enters the buccal cavity and passes through

the vocal slits to inflate the vocal sac. One of the most

conspicuous and near-universal traits of male frogs is the

vocal sac. Its main function is to recycle air from the lungs

to the vocal sac and back again [16,17]. The vocal sac also

radiates sound [18–20], as do the head of some treefrogs

[18] and the ears of bullfrogs [21]. Many frogs rely on

other cues besides the call [22], and the inflating vocal sac

can provide a visual cue to the receiver [23–25] and can

generate surface-water disturbances that are then

detected by receivers [26,27]. It is important to note

that the individual components that contribute to the
www.sciencedirect.com
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production of the anuran vocalization do not act in iso-

lation; for example, Kime et al. [28��] modeled how the

vibration patterns of the vocal folds are influenced by

pressure in both the lungs and the buccal cavity, and may

also be modulated by the oscillatory behavior of other

vocal system components such as the arytenoid cartilages.

Complex calls, sexual selection, and call
production in túngara frogs
The túngara frog, Physalaemus (=Engystomops) pustulosus,
produces a call with two components, a frequency-modu-

lated whine which can be produced by itself (simple call)

or followed by 1–7 harmonic bursts or chucks (complex

calls). The whine temporally overlaps the first chuck, thus

the two components can be produced simultaneously

(Figure 1). The whine is necessary and sufficient to elicit

female phonotaxis and is critical for species recognition.

The chuck by itself is not a salient signal, but when a

single chuck is added to the whine it increases the

whine’s attractiveness fivefold. Males can facultatively

add to up to seven chucks and females also prefer calls

with more versus fewer chucks [29–31]. Thus these

complex calls, and the structures that produce it, are

favored by sexual selection. Chucks also impose a cost

by attracting the frog eating bat (Trachops cirrhosis) and

other acoustically orienting predators [29,31]. The pre-

ference for chucks might precede the evolution of the

chucks themselves. Physalaemus coloradorum lack chucks

but females are attracted to their own call followed by

three P. pustulosus chucks, but they do not prefer their
Figure 1
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own call plus one chuck over their normal chuck-less call

(reviewed in [31]).

How can the túngara frog produce two call components

that overlap in time? In 1976, Charles Greenwalt, the

pioneer of oscine song production [32], speculated: ‘There

is no very good evidence that frogs have the two acoustical

systems which birds possess. There is a hint in Engystomops
[= Physalaemus] pustulosus that something of this sort might

exist, but frankly I doubt it.’ (p. 72 in [29]).

Nothing then known about anuran call production could

account for the whine-chuck. Drewry et al. [33] sought the

mechanism of the ‘two-voiced frog call’ by comparing the

laryngealmorphologyof threecongeners.Theyshowedthat

the túngara frog differed from the others by possessing a

larger fibrous mass (FM) that was connected to the vocal

cordsandwallof the larynxandsuspendedintothebronchial

passage (Figure 2). This configuration, they speculated,

allowed the FM to vibrate independently of the vocal cords

and produce the chuck. Another species that produced only

a whine had a small FM, while a third species with a call that

resembled a long, continuous chuck had a large FM whose

anchoring prohibited it from vibrating independently of the

vocal cords. Thus, despite Greenwalt’s skepticism there

seemed to be two acoustical systems within the larynx of the

túngara frog that enabled production of its complex call.

The key support for the ‘two-voiced’ complex call is

experimental. When Gridi-Papp et al. [34] surgically
msec
0 500

whine + chuck
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Figure 2
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Laryngeal morphology of the túngara frog. The arytenoid cartilages are in yellow, the cricoid cartilage in red, the fibrous masses in blue, the vocal folds

in white, the bronchi in green and the lungs in pink. (a) Approximate position of the larynx and lungs in the calling frog. (b) Simplified illustration of the

larynx without bronchi or lungs. (c) A view of the larynx from the lungs showing the expansion of the fibrous masses toward the bronchi. (d) A medial

section of the larynx showing the attachment of the fibrous mass to the vocal fold.

From Gridi-Papp et al. [34].
ablated the FM, male túngara frogs were unable to

produce chucks. This is an unusual situation in which

a specific morphological structure in the larynx is associ-

ated with a specific signal component.

Ryan and Drewes [35] conducted phylogenetic compari-

sons that offered insights into the pattern of complex call

evolution and the underlying morphology that deter-

mines it. They compared species from two clades of

the P. pustulosus species group. One clade contains P.
coloradorum and P. pustulatus, which are restricted to

regions west of the Andes. These two species lack chucks

and have smaller larynges and FMs.

The other clade contains P. pustulosus and the Amazonian

Physalaemus petersi. Ryan and Drewes examined individ-

uals from two populations of P. petersi (both are now called

Physalaemus freibergi [36,37]), one in southern Peru and

one in western Brazil. Males in the former population only

infrequently added chucks (sometimes called ‘squawks’)

and had a smaller mass. The Brazilian P. petersi had a large

FM similar to the homologous mass in P. pustulosus.
Larynx and FM size covaried, presumably because a

larger larynx is needed to house a larger FM [38]. But

larynx and FM size are not inextricably coupled in their

development and evolution. As we note below, some

populations of P. petersi produce low-frequency whines

typical for males with larger larynges but lack chucks and

presumably the large FM.
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These species comparisons suggest that the chuck

evolved in the common ancestor of P. pustulosus and P.
petersi-P. freibergi, and was subsequently lost or indepen-

dently evolved in some populations of the P. petersi clade

(Figure 4).

The patterns of development that result in the large

larynx and large FM of túngara frogs has also been

documented. As only the male frog produces advertise-

ment calls, it is not surprising that there is a strong sexual

dimorphism in larynx size (Figure 3). Túngara frogs are

less than 13 mm snout-to-vent length (SVL) when they

metamorphose and the larynges of the sexes are indis-

tinguishable until about 16 mm when males show strong

positive allometric growth in overall larynx size (Figure 3)

as well as the size of the vocal cords and the FM [39].

Interestingly, larynx growth plateaus when males first call

in the field, at about 24 mm SVL [29]. Thus male repro-

ductive behavior is triggered when the larynx is fully

developed.

Speciation and the larynx
In P. petersi and P. freibergi the simple calls consist of a

whine preceded by a short prefix. As far as we know, all P.
pustulosus and P. freibergi males are able to produce

chucks. But the presence of complex calls varies among

populations of P. petersi [39–41]. Larynx morphology

maps onto call variation among populations as it does

among species. Both the larynx and the FM are larger in
www.sciencedirect.com
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Figure 3
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Larynx area growth relative to body size in Physalaemus pustulosus.

Shaded area corresponds to the time window in which strong positive

allometry occurs in males.

From Guerra et al. [39].

Figure 4
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populations where males produce complex calls com-

pared with populations in which males produce only

simple calls (prefix plus whine) [38]. Moreover, FM size

is correlated with larynx size, which in turn influences the

frequency of the call (larger larynx ! lower frequency) as

it does in many vertebrates [42,43]. Thus P. petersi that

produce chucks also have lower-frequency whines.

Females from P. petersi populations where males produce

chucks prefer calls with chucks, while females from popu-

lations where males do not produce chucks have no such

preference [40,44]. Boul et al. [40] compared preferences

for simple calls from populations with and without chucks.

The population with no chucks has high-frequency simple

calls and the populations with chucks has low-frequency

complex calls. Females exhibited a near unanimous pre-

ference for the local simple call versus the foreign simple

call. The most obvious difference between the two calls

was the whine frequency. Males from populations that

produced chucks had larger larynges and FM and lower-

frequency whines, thus it seems that the population-based

preference was based on whine frequency. Boul et al.
suggested that in P. petersi sexual selection favors the

evolution of the chuck, and when the chuck and the larger

larynx that produces it evolve, so do low-frequency whines.

Thus the low-frequency whines and the population-based

preferences for them are incidental consequences of

sexual selection favoring chucks, they result in behavioral
pes

+

+
+

+

+

+

+
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Complexity
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reproductive isolation between populations, and thus

could potentially contribute to speciation.

A later study by Guerra and Ron [44] added more complex-

ity to the situation and also demonstrates the importance of

whine-frequency for population-based preferences. They

tested females from a population where males did not

produce chucks but had low-frequency whines (low-fre-

quency simple). These females preferred low-frequency

whines to high-frequency whines whether the low-fre-

quency whines were from populations that did or did

not produce chucks (Figure 4). These phonotaxis results

are consistent with Boul et al., in that low-frequency versus

high-frequency whines generate strong preferences for

local calls. Their results, however, also showed that low-

frequency whines can exist in the absence of chucks. Thus

low-frequency whines can evolve independently of com-

plex calls. If females show preferences for whines from

their own populations, then the divergence of larynx

morphologies and the calls they produce could contribute

to behavioral isolation among populations and thus poten-

tially drive speciation.

Conclusions and future directions
The studies reviewed here have revealed the links be-

tween laryngeal morphology, mating call variation, and

both sexual selection and speciation. Female preference

for lower-frequency whines produced by larger larynges

can act as a pre-mating isolating mechanism. In some

cases the preference for chucks drives the evolution of

larger larynges and lower-frequency calls, while in other

cases larger larynges evolve independently of chucks.

These studies have some similarities to the well-know

system of Darwin’s finches in which variation in beak

morphology is correlated to variation in diet, which then

drives ecological speciation [45] and also has incidental

effects on song production that contribute to species

divergence [46]. In addition, there is a good understand-

ing of the genetic and developmental mechanisms that

underlie variation in beak morphology [47,48]. A remain-

ing challenge in the túngara frog system is to dig one layer

deeper and identify the patterns of gene expression that

account for the laryngeal variation that is subject to sexual

selection and contributes to behavioral reproductive iso-

lation and speciation.
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